
Fiorini s.p.a.

ТЕХНИЧЕСКИЙ КАТАЛОГ

АККУМУЛЯЦИОННЫЙ БЛОК VKPB

ТЕХНИЧЕСКИЙ КАТАЛОГ VKPB

Страница 1 из 21 Редакция 0 Дата 06/03/2000

Коды Fiorini для моделей с одним насосом

Модель		Er	мкость резері	зуара (литрь	ı)	
насоса	0350	0500	0750	1000	1500	2500
P01	3321P010350	3321P010500	3321P010750	3321P011000	3321 P011500	3321P012500
P02	3321P020350	3321P020500	3321P020750	3321P021000	3321 P021500	3321P022500
P03	3321P030350	3321P030500	3321P030750	3321P031000	3321 P031500	3321P032500
P04	3321P040350	3321P040500	3321P040750	3321P041000	3321 P041500	3321P042500
P05	3321P050350	3321P050500	3321P050750	3321P051000	3321 P051500	3321P052500
P06	3321P060350	3321P060500	3321P060750	3321P061000	3321 P061500	3321P062500
P07	3321P070350	3321P070500	3321P070750	3321P071000	3321 P071500	3321P072500
P08	3321P080350	3321P080500	3321P080750	3321P081000	3321 P081500	3321P082500
P09	3321P090350	3321P090500	3321P090750	3321P091000	3321 P091500	3321P092500
P10	3321P100350	3321P1 00500	3321P100750	3321P101000	3321 P101500	3321P102500
P11	3321P110350	3321P10500	3321P110750	3321P111000	3321 P111500	3321P112500
P12	3321P120350	3321P120500	3321P120750	3321P121000	3321 P121500	3321P122500
P13	3321P130350	3321P130500	3321P130750	3321P131000	3321 P131500	3321P132500
P14	3321P140350	3321P140500	3321P140750	3321P141000	3321 P141500	3321P142500

Коды Fiorini для моделей с двойным насосом

Модель		Er	мкость резері	зуара (литрь	ı)	
насоса	0350	0500	0750	1000	1500	2500
P01	3322P010350	3322P010500	3322P010750	3322P011000	3322 P011500	3322P012500
P02	3322P020350	3322P020500	3322P020750	3322P021000	3322 P021500	3322P022500
P03	3322P030350	3322P030500	3322P030750	3322P031000	3322 P031500	3322P032500
P04	3322P040350	3322P040500	3322P040750	3322P041000	3322 P041500	3322P042500
P05	3322P050350	3322P050500	3322P050750	3322P051000	3322 P051500	3322P052500
P06	3322P060350	3322P060500	3322P060750	3322P061000	3322 P061500	3322P062500
P07	3322P070350	3322P070500	3322P070750	3322P071000	3322 P071500	3322P072500
P08	3322P080350	3322P080500	3322P080750	3322P081000	3322 P081500	3322P082500
P09	3322P090350	3322P090500	3322P090750	3322P091000	3322 P091500	3322P092500
P10	3322P100350	3322P1 00500	3322P100750	3322P101000	3322 P101500	3322P102500
P11	3322P110350	3322P10500	3322P110750	3322P111000	3322 P111500	3322P112500
P12	3322P120350	3322P120500	3322P120750	3322P121000	3322 P121500	3322P122500
P13	3322P130350	3322P130500	3322P130750	3322P131000	3322 P131500	3322P132500
P14	3322P140350	3322P140500	3322P140750	3322P141000	3322 P141500	3322P142500

Коды Fiorini для моделей с одним насосом на 100 и 200 литров

Модель	Емкость резервуара (литры)							
насоса	0100	0200						
PM1	3321PM10100	3321PM10200						
PM2	3321PM20100	3321PM20200						

УКАЗАТЕЛЬ

Страница 3 из 21 Редакция 0 Дата 06/03/2000

ОБЩАЯ ИНФОРМАЦИЯ	5
ХАРАКТЕРИСТИКИ	
Описание блока	7
Назначение машины	7
Основные компоненты	7
Имеющиеся модели	8
Описание компонент	
Технические характеристики	9
Назначение и проектирование	
Характеристики насосов	
Примеры гидравлических схем	
УСТАНОВКА И ПЕРЕМЕЩЕНИЕ	
Выбор местоположения при установке	18
Проверка и перемещение блока	
Снятие упаковки и установка блока на место	19
Начальное давление расширительного бака	19
Заливка воды	
Подготовка к пуску	
Пуск	
Инструкции по утилизации	
Диагностика неисправностей	

ОБЩАЯ ИНФОРМАЦИЯ

Страница 5 из 21 Редакция 0 Дата 06/03/2000

Модель: ИНЕРЦИОННАЯ ЕМКОСТЬ С АКСЕССУАРАМИ

Артикул: 3322P111000 VKPB 2P/11 1000 литров

Серийный номер: 030825 12924

Год: 2003

Запрещается запускать машину, указанную в данной Декларации, прежде чем другая установка, в которую она встроена, или в паре с которой она будет работать, не будет объявлена соответствующей предписаниям данной Директивы.

Декларация соответствия

Мы, нижеподписавшиеся, заявляем под нашу ответственность, что данная машина соответствует предписаниям Директивы о Машинах 89/392/СЕЕ и ее последующим редакциям.

Форли, 20/12/1999

Генеральная Дирекция Инженер Антонио Фаббри

ЗАМЕЧАНИЕ

Храните данное руководство в сухом месте, чтобы оно было читабельно, по крайней мере, в течение 10 лет.

Внимательно прочтите все инструкции, содержащиеся в настоящем руководстве. Уделите особое внимание правилам эксплуатации, отмеченным надписями «ОПАСНО» ил «ВНИМАНИЕ», поскольку, если вы не будете их соблюдать, вы можете нанести вред машине и/или людям и предметам.

Если какая-либо аномалия не описана в данном руководстве, свяжитесь с нашим офисом в Форли.

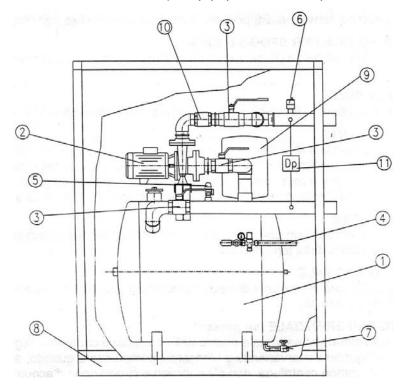
Фирма FIO9RINI srl снимает с себя всякую ответственность за любой ущерб, вызванный неправильной эксплуатацией машины, неполным или поверхностным прочтением информации, содержащейся в данном руководстве.

Страница 7 из 21 Редакция 0 Дата 06/03/2000

ОПИСАНИЕ БЛОКА

НАЗНАЧЕНИЕ МАШИНЫ

Агрегаты VKPB представляют собой гидромодули (гидравлические централи) с инерционной аккумуляцией, спроектированные для того, чтобы значительно уменьшить время заправки систем кондиционирования и охлаждения.


Они включают все компоненты, необходимые для правильной работы гидравлического контура для раздачи охлажденной воды. Их можно устанавливать вместе с любыми охладителями воды. Гидромодули состоят из инерционного бака с теплоизоляцией, расширительного бачка, одиночного или двойного насоса, дифференциального реле давления, предохранительного клапана, воздухоотделителя, вентиля для слива и залива воды в систему и термометра. Они находятся внутри несущего каркаса, основание изготовлено из окрашенной стали, а рама и панели выполнены из алюминия.

С точки зрения гидравлической схемы, бак установлен между холодильным агрегатом и фанкойлами. Он увеличивает общее содержание воды в системе, благодаря чему увеличивается время между остановкой компрессора и его последующим пуском: таким образом, уменьшается количество пусков компрессора и увеличивается его срок службы. Установка любого размера может комплектоваться циркуляционным насосом на выбор из тех, что имеются в наличии.

Блок полностью собирается на заводе, и каждый блок проходит технический контроль, ко всем компонентам очень легко подобраться, что облегчает техническое обслуживание.

ОСНОВНЫЕ КОМПОНЕНТЫ

- 1) Накопительная емкость
- 2) Электрический насос
- 3) Запорный шаровой кран
- 4) Блок автоматической заливки
- 5) Предохранительный клапан
- 6) Автоматический клапан для выпуска воздуха
- 7) Вентиль слива
- 8) Несущая конструкция
- 9) Расширительный бачок
- 10) Обратный клапан (для моделей с 2 насосами)
- 11) Дифференциальное реле давления

Fiorini S.p.A. – Via Copernico 81/85 – 47100 Forli – Тел. 0543/723197 – Факс 0543/720413

Страница 8 из 21 Редакция 0 Дата 06/03/2000

имеющиеся модели

Гидромодули VKPB могут иметь емкость 350, 500, 750, 1000, 1500 и 2500 литров. Для каждой из этих моделей можно выбрать один из 14 различных типов насосов, как в одиночном, так и в двойном исполнении. Для моделей на 100 и 200 литров с одинарным насосом имеются только 2 типа насосов, а всего имеется 172 различных моделей.

ОПИСАНИЕ КОМПОНЕНТ

1. НАКОПИТЕЛЬНЫЙ БАК

Он изготовлен из углеродистой стали, покрашенной снаружи, он защищен теплоизоляцией из вспененного эластомера с закрытыми ячейками, чтобы предотвратить образование конденсата.

2. ЭЛЕКТРИЧЕСКИЙ НАСОС

Насос центробежного типа с крыльчаткой из нержавеющей стали. Он подает воду к потребителям, всасывая ее из накопительного бака. Для каждого объема бака можно выбрать один из 16 имеющихся насосов, одинарных, либо сдвоенных. От выбора насоса зависит диаметр трубопроводов на входе и на выходе.

3. ЗАПОРНЫЙ ШАРОВОЙ КРАН

Он перекрывает путь к электрическому насосу и к циркуляционному насосу на первичном контуре, если таковой имеется. Он служит для того, чтобы быстро менять насосы, не сливая воду из системы.

4. УСТРОЙСТВО АВТОМАТИЧЕСКОЙ ЗАЛИВКИ (если таковое имеется)

Комплектуется манометром и запорным вентилем, служит для автоматической заливки воды в гидравлический контур, как на этапе пуско-наладочных работ, так и во время обычной работы.

5. ПРЕДОХРАНИТЕЛЬНЫЙ КЛАПАН

Он тарирован на 3 бар, воды из выхода эвакуируется наружу, служит для защиты блока от избыточного давления, если таковое возникнет.

6. АВТОМАТИЧЕСКИЙ КЛАПАН ДЛЯ ВЫПУСКА ВОЗДУХА

Он устанавливается в верхней части блока, служит для удаления воздуха, если таковой попадет в систему.

7. ВЕНТИЛЬ СЛИВА

Сливает воду из самой нижней точки бака.

8. НЕСУЩАЯ КОНСТРУКЦИЯ

Основание изготовлено из листовой стали большой толщины, покрашенной в цвет RAL 7042. Рама контейнера состоит из алюминиевых профилей, а стенки — из алюминиевого листа соответствующей толщины, обладающего высокой устойчивостью к воздействию атмосферных осадков. Благодаря этим особенностям конструкции, блок VKPB можно устанавливать не только в технических помещениях, а также в местах, подверженных воздействию атмосферных осадков.

9. РАСШИРИТЕЛЬНЫЙ БАЧОК

Бак мембранного типа, заряжен азотом, его размер подобран таким образом, чтобы он мог вмещать увеличивающийся объем жидкости при изменении температуры.

10. ОБРАТНЫЙ КЛАПАН

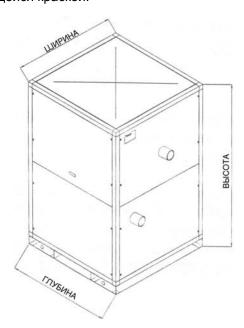
Позволяет воде двигаться только в одном направлении, предотвращает ненужную обратную циркуляцию воды. Устанавливается только в моделях с 2 насосами.

11. ДИФФЕРЕНЦИАЛЬНОЕ РЕЛЕ ДАВЛЕНИЯ

Оно измеряет разницу давлений между прямым и обратным трубопроводом накопительного бака и следит за работой холодильного цикла и срабатывает, останавливая компрессор, в том случае, когда по причине какой-либо неисправности центробежного насоса, в контуре циркулирует недостаточное количество воды. Таким образом, система защищается от замерзания. Электрическое подключение реле давления должна выполнить монтажная организация.

Страница 9 из 21 Редакция 0 Дата 06/03/2000

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ


Модель VKPB	Ед. изм.	100	200	350	500	750	1000	1500	2500
Реальная емкость	Л	100	200	330	500	730	840	1460	2250
Емкость расширительного бачка	л	8	8	8	12	24	24	2x24	2x24
Тарирование расширительного бачка	бар	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
Тарирование предохранительного клапана	бар	3	3	3	3	3	3	3	3
Тип резьбовых соединений воды (дюймовая газовая резьба)	(1)	F	F	F	F	F	F	F	F
Электрический ТЭН для защиты от обмерзания (*)	Вт	1300	1300	1300	1300	1300	1300	1300	1300
Высота	MM	1284	1576	1950	1950	1950	1950	1950	1950
Ширина	MM	635	684	1200	1200	1200	1200	1720	1720
Глубина	MM	688	684	1200	1450	1450	1450	2260	2260

(1) F = соединение с внутренней резьбой

(*) устанавливается на заказ

Модель	PM1	PM2	03	04	05	06	07	08	09	10	11	12	13	14	15	16
насоса	1 1711	1 1712	00	ΟT	3	00	01	0	03	1		12	10	ľ	2	
Диаметр																
соединений с	1	1 1/4	2	2	2	2 ½	2 ½	3	3	3	3	3	3	4	4	4
внутренней	дюйм	дюйма	дюйма	дюйма	дюйма	дюйма	дюйма	дюйма	дюйма	дюйма	дюйма	дюйма	дюйма	дюйма	дюйма	дюйма
резьбой																l

На машине наклеены таблички над каждый выходящим трубопроводом, на которых написано его назначение. Помимо этого имеется «табличка с техническими характеристиками», на которой указаны марка, модель, заводской номер, технические характеристик и напряжение питания. Надписи на всех табличках выполнены несмывающейся краской.

Fiorini S.p.A. – Via Copernico 81/85 – 47100 Forli – Тел. 0543/723197 – Факс 0543/720413

Страница 10 из 21 Редакция 0 Дата 06/03/2000

НАЗНАЧЕНИЕ И ПРОЕКТИРОВАНИЕ

НОРМАЛЬНЫЕ УСЛОВИЯ ЭКСПЛУАТАЦИИ

Емкость устанавливается в системах кондиционирования среднего размера, она соединяется с охладителем (чилером), который будет забирать тепло из системы, работая с номинальным стандартным тепловым перепадом (7 – 12 $^{\circ}$ C).

Средняя рабочая температура будет составлять приблизительно 10°C, рабочее давление меняется от 0,5 до 2,5 бар. Смена жидкости внутри бака зависит от рабочей точки системы в целом — холодильного агрегата, которая является точкой пересечения характеристической кривой насоса, поэтому она зависит также от скорости его вращения, с характеристической кривой самой системы.

Поскольку гидромодуль предназначен для работы внутри теплового насоса, он может работать также при достаточно высоких температурах, вплоть до 60°С, при давлении немного большим, чем давление в системе летом, благодаря герметичному расширительному бачку, который изначально находится под давлением в 1,5 бар.

ВЕРОЯТНЫЕ АНОМАЛЬНЫЕ УСЛОВИЯ ЭКСПЛУАТАЦИИ

Емкость защищена от различных аномальных условий работы. Может выйти из строя центробежный насос, в результате чего остановится циркуляция жидкости теплоносителя: в летнем режиме чилер продолжает забирать тепло до тех пор, пока не сработает дифференциальное реле давления и не остановит компрессор, чтобы в системе не замерзла жидкость, в результате чего ее объем может увеличиться и разорвать некоторые компоненты системы. Реле давления следит за правильной работой холодильного цикла и защищает систему от данной неисправности. Но для большей безопасности рекомендуется добавлять в теплоноситель антифриз. Что касается зимнего режима работы, не может быть проблем с избыточным давлением, вызванных расширением жидкости, поскольку расширительный бачок имеет размер, рассчитанный на самую высокую температуру, которая может быть достигнута в холодильном цикле. Другие проблемы с избыточным давлением могут возникнуть в том случае, если в системе установлено устройство для автоматической подпитки теплоносителя. Если оно было неправильно отрегулировано во время пуско-наладочных работ или если возникнут проблемы во время эксплуатации, избыточное давление будет сброшено в результате срабатывания предохранительного клапана, который тарирован на 3 бара. Если же в баке установлен ТЭН, они обеспечивают дополнительную защиту от замерзания жидкости теплоносителя.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Использование инерционных емкостей данного типа ограничено системами кондиционирования среднего размера, как уже было сказано, они устанавливаются между чилером и системой в том числе и там, где они могут подвергаться воздействию атмосферных осадков.

РЕЖИМ ЗАЛИВКИ

Режим заливки бака определяется климатическими условиями на улице и требованиями конечного потребителя (эти условия учитываются при проектировании гидромодуля).

ПРЕДУСМОТРЕННЫЙ СРОК СЛУЖБЫ

Машины этого типа ставятся вместе с другими машинами, которые однозначно имеют меньший срок службы, поскольку они имеют движущиеся части, подверженные большему износу, поэтому срок службы всей системы определяется холодильным циклом, который будет исполняться. Единственный элемент, который может повлиять на срок службы гидромодуля, это центробежный насос, который легко заменить или отремонтировать в сервисной службе в случае поломки или неполадок в работе.

Страница 11 из 21 Редакция 0 Дата 06/03/2000

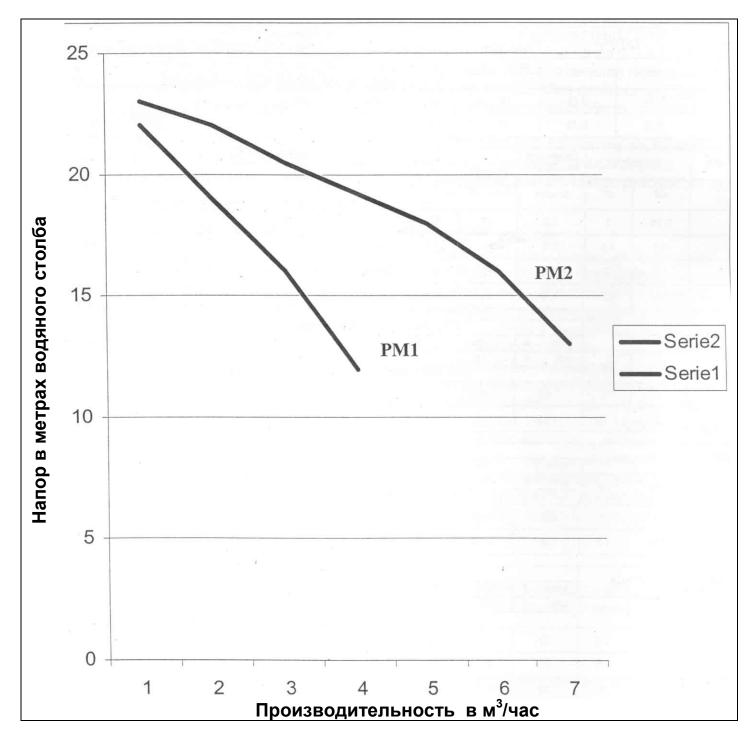
ХАРАКТЕРИСТИКИ НАСОСОВ

ТАБЛИЦА С РАБОЧИМИ ХАРАКТЕРИСТИКАМИ ПО ВОДЕ

ТИП	MOULE	мощность		Q = ПРОИЗВОДИТЕЛЬНОСТЬ									
HACOCA	МОЩГ			34	51	68	85	102	119				
Однофазный	ı/D+	кВт л.с.		2	3	4	5	6	7				
230 Вольт	KDI	J1.C.		Н = ОБЩИЙ НАПОР В МЕТРАХ ВОДЯНОГО СТОЛБА									
PM1	0,55	0,75	22	19	16	12							
PM2	0,55	0,75	22	20	19	18	16	13	11				

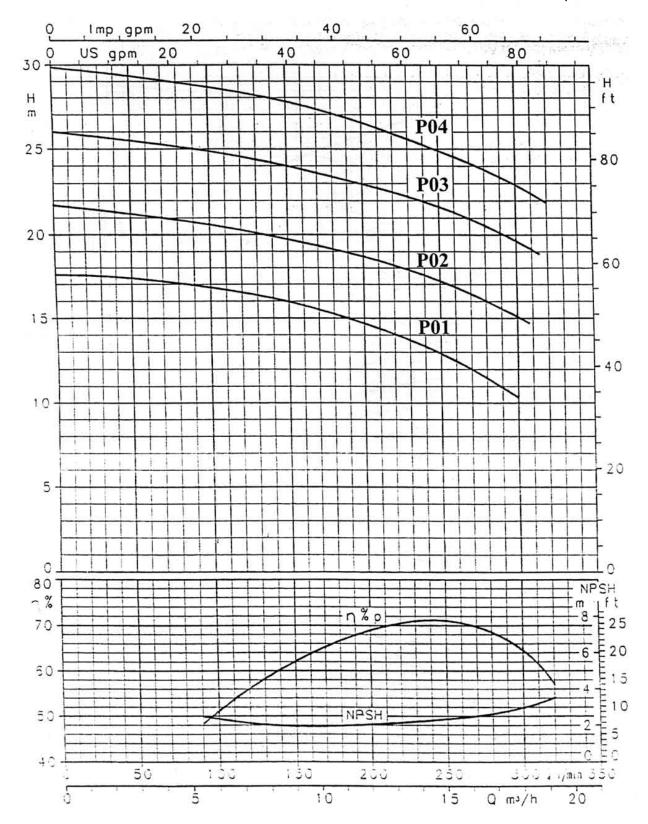
ТИП	MOUL	юсть	Потребля-			Q = ΠΡΟ	ИЗВОДИТЕ	ЛЬНОСТЬ						
HACOCA	імощі	ЮСТВ	емый ток	л/мин 80	100	120	140	160	200	250	300			
Трехфазный	кВт	п.о	Ампор	м ³ /ч 4,8	6	7,2	8,4	9,6	12	15	18			
380/415 B	KDI	л.с.	Ампер		Н = ОБЩИЙ НАПОР В МЕТРАХ ВОДЯНОГО СТОЛБА									
P01	0,75	1	2,2	17	17	16,5	16	16	14,5	13	10,5			
P02	1,1	1,5	2,8	21	20,5	20,5	20	19,5	18,5	17	15			
P03	1,5	2	3,6	25	25	24,5	24	24	23	21,5	19,5			
P04	1,85	2,5	4,4	29	28,5	28,5	28	27,5	26,5	25	23			

ТИП	MOUL	МОШНОСТЬ			Q = ΠΡΟΙ	ИЗВОДИТЕ Г	ІЬНОСТЬ						
HACOCA	МОЩЕ	10016	л/мин 17	34	51	68	85	102	119				
Трехфазный	кВт	п.о	м ³ /ч 1	2	3	4	5	6	7				
380/415 B	KDI	л.с.		Н = ОБЩИЙ НАПОР В МЕТРАХ ВОДЯНОГО СТОЛБА									
P05	1,5	2	19,5	18,5	18	16,2	13,7	10,6	6,8				
P06	3	4	31,5	30	29,5	27,5	24,5	21,5	17,4				

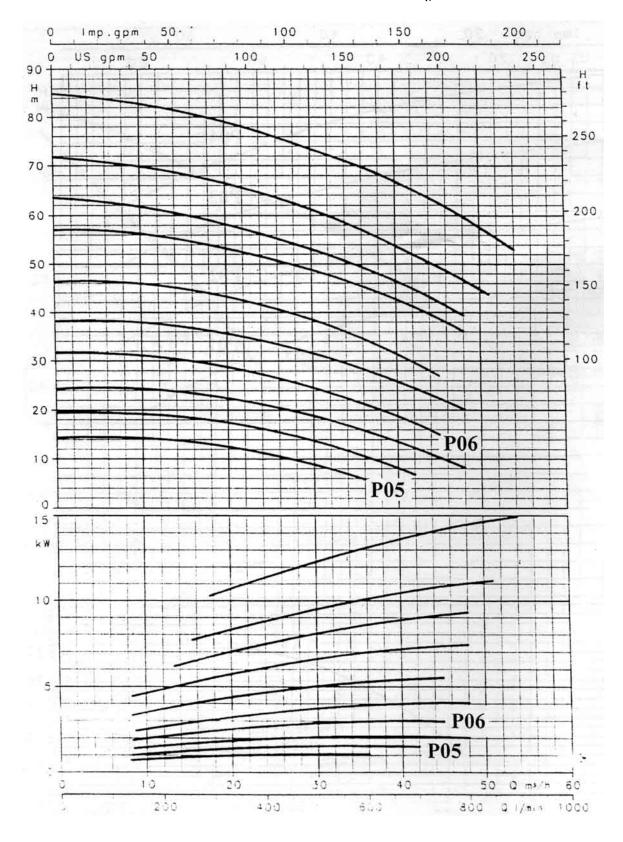

ТИП	МОШЬ	ЮСТЬ	Q = ПРОИЗВОДИТЕЛЬНОСТЬ								
HACOCA	МОЩГ	ЮСТВ	л/мин 0	500	600	700	800	1000	1200	1400	
Трехфазный	ı¢D=		м ³ /ч 0	30	36	42	48	60	72	84	
380/415 B	кВт л.с.			H = OI	БЩИЙ НАП	ЮГО СТОЈ	16A				
P07	3	4	20	19,5	18,*	18	16,9	14,1	10,5		
P08	5,5	7,5	32	31,5	30,5	29,5	28	24,5	20,5	14,8	

ТИП	МОШЬ	юсть	Q = ПРОИЗВОДИТЕЛЬНОСТЬ										
HACOCA	МОЩГ	10016	л/мин 0	800	1000	1200	1400	1600	1800	2000	2300		
Трехфазный	кВт	п.	м ³ /ч 0	48	60	72	84	96	108	120	128		
380/415 B	KDI	Л.С.		Н = ОБЩИЙ НАПОР В МЕТРАХ ВОДЯНОГО									
P09	5,5	7,5	23	21,5	20,5	19	17,5	16	14				
P10	11	15	36	35	34	33	31,5	30	28	25,5			
P11	15	20	42	41,5	41	40	38,5	37	35	33	29,5		

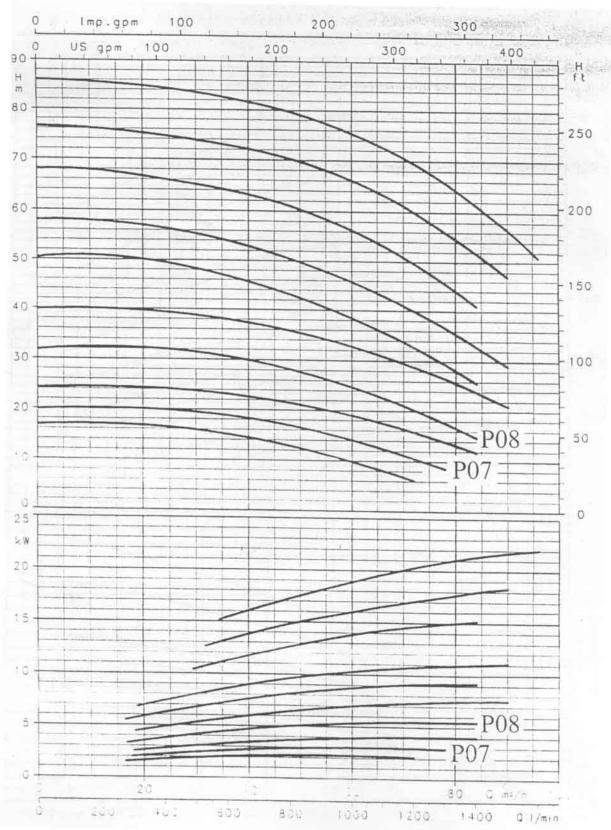
ТИП	мошн	IOCTL			Q	= ПРОИЗВ	ОДИТЕЛЬН	Q = ПРОИЗВОДИТЕЛЬНОСТЬ										
HACOCA	МОЩІ	ЮСТВ	л/мин 0	1400	1600	1800	2000	2300	2500	3000	3600							
Трехфазный	кВт	пс	м ³ /ч 0	84	96	108	120	138	150	180	128							
380/415 B	KDI	л.с.		Н = ОБЩИЙ НАПОР В МЕТРАХ ВОДЯНОГО СТОЛБА														
P12	15	20	33	33	32	31	30	28	26	22								
P13	18,5	25	39	38,5	37,5	36,5	35,5	34	32,5	28,5	22							
P14	22	30	48	47,5	46,5	45	43,5	41	38,5	32,5								

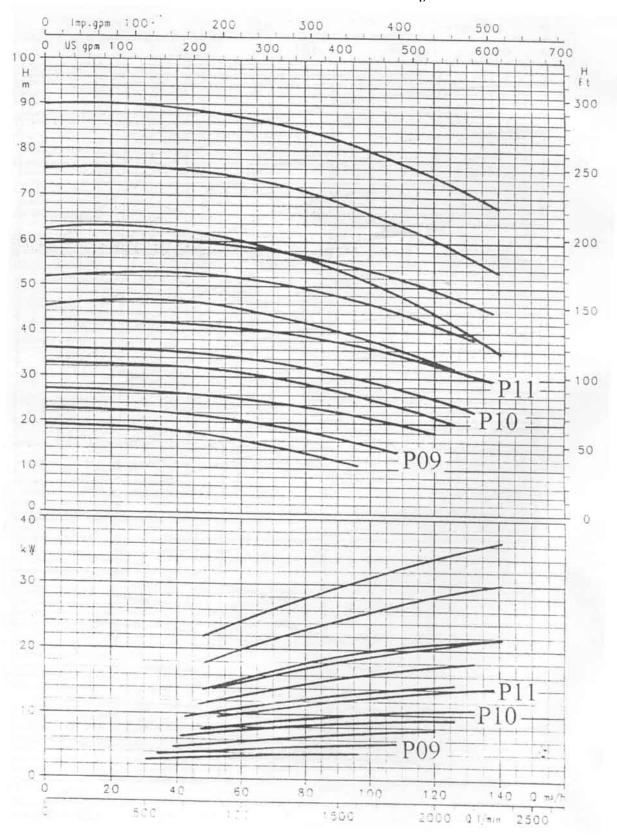

Страница 12 из 21 Редакция 0 Дата 06/03/2000

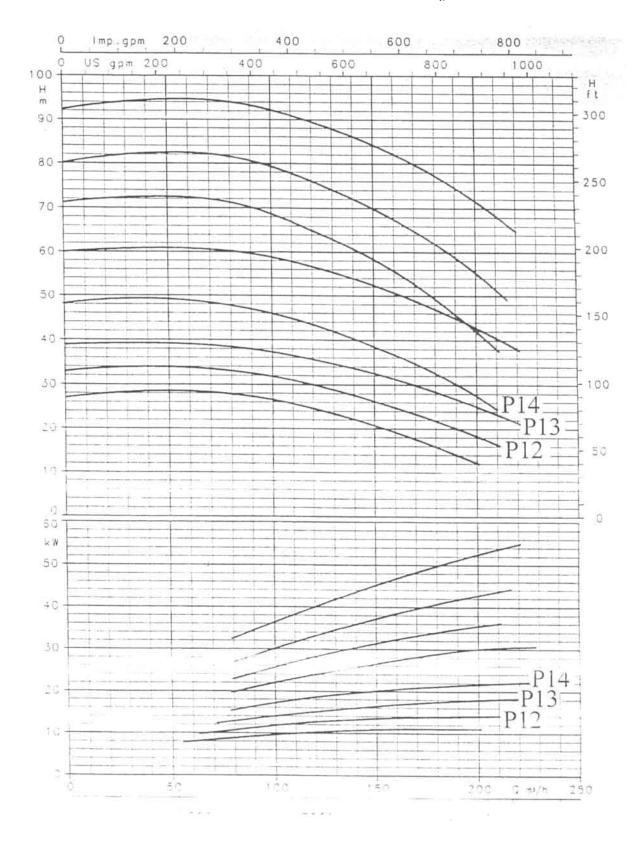
РАБОЧИЕ ХАРАКТЕРИСТИКИ ПРИ 2900 об/мин 50 Гц



Страница 13 из 21 Редакция 0 Дата 06/03/2000

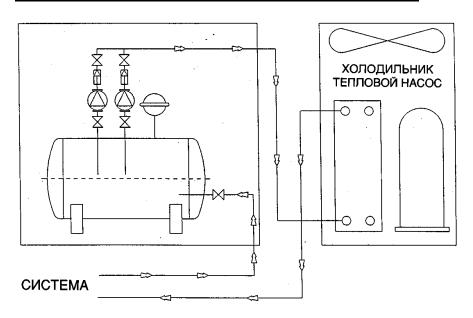

РАБОЧИЕ ХАРАКТЕРИСТИКИ ПРИ 2850 об/мин 50 Гц

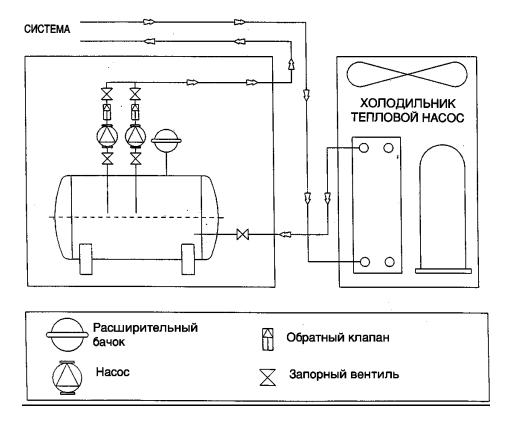




Fiorini S.p.A. – Via Copernico 81/85 – 47100 Forli – Тел. 0543/723197 – Факс 0543/720413

Страница 16 из 21 Редакция 0 Дата 06/03/2000




Страница 18 из 21 Редакция 0 Дата 06/03/2000

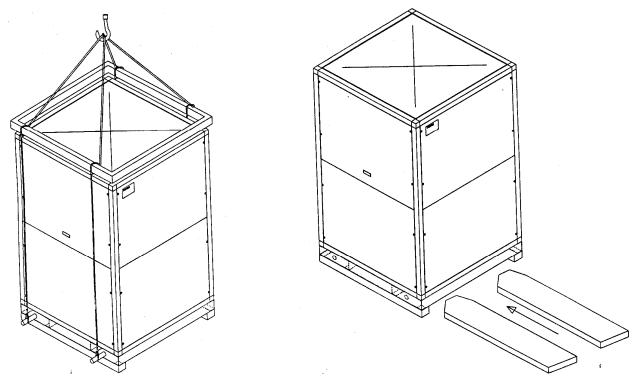
ПРИМЕРЫ ГИДРАВЛИЧЕСКИХ СОЕДИНЕНИЙ

Схема с аккумуляцией на обратном трубопроводе

Схема с аккумуляцией на прямом трубопроводе

Fiorini S.p.A. – Via Copernico 81/85 – 47100 Forli – Тел. 0543/723197 – Факс 0543/720413

УСТАНОВКА


Страница 19 из 21 Редакция 0 Дата 06/03/2000

ВЫБОР МЕСТА ДЛЯ УСТАНОВКИ

Требования к месту установки агрегатов серии VKPB:

- 1. Конструкция должны выдерживать вес блока, а пол должен быть ровным, чтобы не происходило вибрации и шума.
- 2. Для облегчения технического обслуживания блока, вокруг него необходим о оставить достаточно места.
- 3. Место не должно быть пожароопасным, в вязи с утечкой горючих газов.
- 4. Необходимо предусмотреть, чтобы вероятные утечки воды не могли нанести ущерб.
- 5. Шум, производимый агрегатом, не должен приносить неудобства.
- 6. Должна быть возможность прикрепить агрегат к бетонному основанию.

ПРОВЕРКА И ПЕРЕМЕЩЕНИЕ АГРЕГАТА

В момент приемки, аппарат необходимо тщательно проверить, нет ли каких-либо повреждений, полученных в процессе транспортировки. При обнаружении каких-либо поломок, необходимо немедленно сообщить об этом перевозчику. При перемещении аппарата, необходимо учитывать следующие замечания:

- 1. Аппарат представляет собой хрупкий груз и его необходимо кантовать осторожно.
- 2. Если понадобиться поднимать аппарат, то это лучше делать с помощью крана с использованием специальных ремней или с помощью погрузчика.
- 3. При подъеме краном, аппарат необходимо защитить от повреждений, которые могут быть причинены ремнями. При подъеме необходимо учитывать местоположение центра тяжести.
- 4. Для того чтобы избежать повреждений во время транспортировки машины и монтажа остальных компонентов системы, рекомендуется не снимать заводскую упаковку вплоть до момента монтажа.
- 5. Не поднимайте машину за выходящие из нее трубы.

УСТАНОВКА

Страница 20 из 21 Редакция 0 Дата 06/03/2000

СНЯТИЕ УПАКОВКИ И УСТАНОВКА АППАРАТА НА МЕСТО

- 1. Снимите с аппарата упаковку.
- 2. Отвинтите винты, которые крепят агрегат к несущим деревянным доскам.
- 3. При необходимости закрепите агрегат с помощью анкерных болтов, которые пропускаются через отверстия в основании.
- 4. Убедитесь в том, что аппарат выставлен по уровню в обоих направлениях.

Если агрегат необходимо установить на крышу, обязательно проверьте ее прочность и возможность слива. При установке в закрытом помещении, необходимо присоединить гибкую трубку к штуцеру слива (диаметр 1 дюйм).

ПЕРВОНАЧАЛЬНОЕ ДАВЛЕНИЕ В РАСШИРИТЕЛЬНОМ БАЧКЕ

Перед заливкой жидкости в контур, необходимо создать начальное давление в расширительном бачке. Значение давления определяется в зависимости от разницы уровней. Начальное давление создается только сжатым воздухом или азотом.

Начальное давление (Рі), которое должно быть создано в расширительном бачке, рассчитывается следующим образом:

Pi = Pf (1 - E/V)

Pf = Максимальное абсолютное давление аккумуляции, то есть давление, на которое тарирован предохранительный клапан (3 бар)

E = Увеличение объема, рассчитывается на основании возможного теплового расширения (I)

V = Объем расширительного бачка (I)

ЗАЛИВКА ВОДЫ

- 1. Присоедините трубопровод к заливному вентилю.
- 2. Откройте клапан регулирования давления и запорный вентиль.
- 3. При заливке удалите из контура весь воздух через клапаны для выпуска воздуха, которые установлены на агрегате VKPB, на потребителях и в самых высоких точках системы.

Вода заливается в систему до тех пор, пока в ней не будет достигнуто необходимое давление (Pr). Это давление отображается на манометре. Давление воды (Pr) зависит от общего объема воды в системе и от начального давления в расширительном бачке.

ПЕРЕД ПУСКОМ

По окончании установки, перед тем как подавать электропитание на установку, выполните следующие проверки:

- 1. Блок VKPB и весь гидравлический контур должны быть заполнены водой.
- 2. Должна быть правильно выполнена подводка воды к аппарату.
- 3. При необходимости, на обратном трубопроводе должен быть установлен фильтр.
- 4. Запорный вентиль и клапан регулирования давления должны быть полностью открыты.

ПУСК

- 1. Убедитесь в том, что в водяном контуре нет воздуха. Останавливайте насос и добавляйте воду в контур до тех пор, пока не будет достигнуто необходимое давление. После чего снова запустите насос.
- 2. Отрегулируйте производительность по воде с помощью специального клапана.
- 3. Остановите насос.
- 4. Включите холодильную остановку. Блок VKPB должен быть подключен к холодильной остановке таким образом, чтобы она автоматически включала насос в случае необходимости.
- 5. Убедитесь в том, что ΔТ охлажденной воды находится в допустимых пределах. При необходимости отрегулируйте расход воды с помощью специального регулировочного клапана.

УСТАНОВКА

Страница 21 из 21 Редакция 0 Дата 06/03/2000

ИНСТРУКЦИИ ПО УТИЛИЗАЦИИ

Утилизация аппарата должна осуществляться в соответствии с действующим законодательством.

ДИАГНОСТИКА НЕИСПРАВНОСТЕЙ

В данном разделе руководства дана полезная информация, необходимая для диагностики и устранения некоторых неполадок, которые могут обнаружиться в гидромодуле. Перед тем, как начинать систематическую диагностику неисправностей, рекомендуется осмотреть аппарат на предмет наличия макроскопических (крупных) дефектов.

СИМПТОМ	ВОЗМОЖНАЯ ПРИЧИНА	КАК УСТРАНИТЬ
1. Очень низкая производительность по воде	а) Запорный вентиль открыт не полностью	а) Полностью откройте запорный вентиль
	б) В контуре присутствует воздух	б) Выпустите воздух из системы
	в) Фильтр загрязнен	в) Прочистите фильтр
	г) Контур засорен в каком-то месте	г) Прочистите засор
	д) Недостаточно открыт клапан для регулирования давления	д) Побольше откройте клапан регулирования давления
	e) Выбран слишком маломощный насос	е) Проверьте напор насоса. Установите более мощный насос.
2. Насос работает слишком шумно	а) Запорный вентиль открыт не полностью	а) Полностью откройте запорный вентиль
	б) В контуре присутствует воздух	б) Выпустите воздух из системы
	в) Фильтр загрязнен	в) Прочистите фильтр
	г) Начальное давление в расширительном бачке и давление воды не соответствуют тем, которые даны в инструкциях по монтажу.	г) Вычислите правильные значения давления в расширительном бачке и в контуре.
3. Открылся предохранительный клапан	а) Начальное давление в расширительном бачке и давление воды не соответствуют тем, которые даны в инструкциях по монтажу.	а) Вычислите правильные значения давления в расширительном бачке и в контуре.